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SUMMARY 

The difficulties experienced in the treatment of hyperbolic systems of equations by the finite element method 
(or other) spatial discretization procedures are well known. In this paper a temporal discretization precedes 
the spatial one which in principle is considered along the characteristics to achieve a self adjoint form. By a 
suitable expansion, the original co-ordinates are preserved and combined with the use of a standard Galerkin 
process to achieve an accurate discretization. It is shown that the process is equivalent to the Taylor-Galerkin 
methods of Donea." 

Several examples illustrate the accuracy and efficiency attainable in such proMems as transport, shallow 
water equations, transonic flow etc. 

1. INTRODUCTION 

The use of upwind differencing or more generally of Petrov-Galerkin methods in steady-state 
convection-diffusion problems is now commonplace and generally accepted, not only to avoid 
spurious oscillations but in general to improve the accuracy of computation. 1-3 Special forms of 
such Petrov-Galerkin processes using so-called streamline or balancing diffusion4g5 are parti- 
cularly effective, and recent mathematical studies have shown that standard Galerkin processes are 
not optimal in minimizing the error for such non-self-adjoint  problem^.^.' 

For transient phenomena of convection-diffusion or for mixed representation of wave problems 
it would appear that similar procedures should be used. Here a 'direct transplant' of concepts led to 
many questions not yet answered satisfactorily. When statically optimal balancing diffusion was 
used the results were invariably overdamped and semi-empirical factors (such as 1/,/ 15) have been 
used by ~ o m e ~ , ~  to counterbalance this effect. Further much debate ensued on such questions as 
the use of Petrov-Galerkin weighting in the context of mass matrices.10.' 

The problems raised above can be side-stepped by using alternative routes. In the first the 
differential equations are recast in terms of moving co-ordinates (or along the characteristics) thus 
making the problem self-adjoint and hence best treated by standard Galerkin spatial discretiz- 
ation. Such procedures have been used with an interpolation after each time-step on the original 
(fixed) c~-ordinates, '~-'~ but appear to be very uneconomical and very difficult to extend to 
systems of equations. More recently a more direct way was introduced, not requiring updating and 
interpolation.'6 The second path has been proposed by Donea" in which a Taylor expansion in 
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time precedes the Galerkin space discretization. This procedure leads to excellent results but 
the Galerkin discretization is not justified by self-adjointness. 

In the present paper the authors show that: 
(a) the use of moving co-ordinates and re-interpolation on to the original mesh (by a Taylor 

expansion) is equivalent to the Taylor-Galerkin process in the case of convection-diffusion 
problems 

(b) for systems of differential equations both procedures are again equivalent 
(c) in multidimensional problems the methods essentially produce a streamline balancing 

Several examples are included showing that physically correct, not overdamped, solutions are 
obtained for transport problems, shallow water equations, Euler equations, etc. although in the 
presence of shock waves additional (gradient proportional) diffusion needs to be added to avoid 
erroneous results. 

diffusion of the correct kind without recourse to semi-empirical coefficients. 

2. THE TAYLOR-GALERKIN METHOD 

A Taylor-Galerkin method for the solution of hyperbolic problems was recently proposed by 
Donea." The method may be described by considering a simple scalar conservation law in 
one dimension expressed as 

au aF 
at ax  
-+-=o 

or, alternatively, in the form 

au au 
at ax - + A - = O  

where 
aF 

A = A(u) = - au 
Making a Taylor series expansion in time about t = t" it is possible to write: 

(3) 

correct to second order, where t"+ = t" + At.  The time derivatives appearing in equation (4) can be 
expressed in terms of space derivatives by using equations (1) and (2). 

From (1): 

at 

and differentiating (1) gives 

This expression may be further reduced by using (3), so that 

a t 2  
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Introducing (5) and (7) in (4) leads to the generalized second-order (Euler) time-stepping scheme: 

At2 a 
U n + l -  - U  n - A t -  :[ +-- 2 a x (  A- :)[ 

By using an expansion correct to third order in place of equation (4), Donea17 has been able to 
produce a third order equivalent of equation (8) and he has also examined the behaviour of other 
time-stepping schemes, obtained by simply taking the Taylor expansion at other values of t .  The 
second order Euler-Taylor-Galerkin method, which is of interest here, results from applying the 
Galerkin finite element method to equation (8). The resulting algorithm, which may be regarded as 
a finite element implementation of the one-step Lax-Wendroff method," has been shown to 
possess excellent phase-accuracy and minimum numerical damping when applied to the scalar 
advection equation. 

3. A CHARACTERISTICS BASED METHOD LEADING TO 
THE EULER-TAYLOR GALERKIN SCHEME 

The solution of (2) may be obtained by the method of characteristics. The characteristics are the 
lines satisfying 

dx 
dt 
- = A  

and along these lines equation (2) is reduced to the characteristics relation: 
au 
at 
- = o  

(9) 

or 

Thus starting from a given initial distribution and a given spatial discretization, equation (1 1) may 
be used to construct the solution at later times with a continuous mesh updating via equation (9). 
This computationally undesirable feature of mesh updating can be avoided as follows. We 
introduce here a characteristic co-ordinate 5, such that 5 is a constant along a characteristic, and 
consider the situation over a time interval t" < t Q t"". Figure 1 shows the characteristic 5 which 
passes through the point P with co-ordinate8 (xp, t") and the point Q with coordinates (x ,  t"+ I). 

u = const. (1 1) 

From equation (1 1) 

u(x, tn+ 1)  = u(xp, t") 

and, using (9) 

xP = x - A t A  (13) 
A being a suitable average value of A over the characteristic curve between the points P and Q. 
Using (13) in (12) and expanding as a Taylor series results in 

with 
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Figure 1. Path of a characteristic over the time interval ( r n , t n + I )  

and 
u" = u(x, t") 

correct to second order. Various approximations will result from different choices of 2, but here 
consideration is restricted to the case when A is defined to be the value of A at the midpoint of the 
spatio-temporal interval, i.e. 

correct to first order. Noting that 

it follows that: 

A= A" - AtA- 
ax 

Combining (17) and (14) we obtain: 

or, rearranging, 
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It can be observed that (19) is just the second-order generalized Euler time-stepping scheme (8). The 
third order schemes of Donea" can be obtained similarly, although the analysis is now much more 
complicated. This section has established the characteristics nature of the Taylor-Galerkin 
schemes. 

Either of the schemes of equations (8), (1  9) can now be used to apply a discretization procedure in 
the spatial co-ordinates in some 'weak' integral form,' 9,20 essentially a reverse order for that 
usually practised (in which the spatial discretization precedes the temporal one). The question 
immediately arises as to the nature of spatial discretization to be followed, i.e. whether Petrov or 
Bubnov-Galerkin procedures should be applied. 

If the nature of( 19) and its derivation is examined, we observe that it represents simply an adjoint 
equation (namely equation (lo)), for which the Bubnov-Galerkin process is optimal-thus 
justifying the Taylor-Galerkin algorithm. 

It is readily seen that both algorithms (8), (19) introduce a second spatial derivative in the last 
term-and hence effectively a balancing diffusion of the type associated with upwind procedures. 
Indeed it will be shown later that this diffusion is streamline oriented in multi-dimensional 
problems and hence of the form similar to that given in References 4 and 5. However now there is 
no arbitrariness with regards to its magnitude. 

In Appendix I we show how the presence of real diffusion in (1) can be treated with the same 
approach. 

4. APPLICATION TO SYSTEMS OF HYPERBOLIC EQUATIONS IN l-D 

A system of coupled hyperbolic equations may be treated similarly. Writing such a system, with 
source term, as 

au aF 
- + - = S(u) 
at ax 

or, alternatively, as 

au au 
at ax 
- + A- = S(U) 

where 
aF A = -  aU 

and proceeding as in Section 2, a direct Taylor-series expansion leads to: 

U n + l  - - u n + A t (  S -:)I"+$[ C( S - g )  -&[ A( S --$)]]I" 
= u" + AL( S - A 2 ) I "  + $[C( S - A g )  -&[A[ S - Ag)]]i" 

where 

as 
au C = -  

A characteristics-based interpretation of this relation is again possible, its derivation proceeding 
exactly as in Section 3 (see Appendix 11). 
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5. SPATIAL DISCRETIZATION 

The spatial discretization of the recurrence relations obtained in ( 1  9) and (23) can now proceed to 
obtain an algorithm for a numerical solution. With the use of standard (or Bubnoo-) Galerkin 
processes (justified in Section 3) we can proceed in the usual finite element manner discussed in 
detail in various  text^.'^^^^ In the 1-D case two-noded linear elements were used with shape 
functions Nj(x) associated with node j. The approximate solution, u", at time t" is expressed as: 

u"= CbYNi (25) 
i 

where ii; is the approximation to the value of u at node j and time t". Once the interpolation of u is 
chosen, the discretization can proceed directly. The integration of the occurring terms can be done 
either exactly or numerically. Numerical experiments show that it is convenient oust as in many 
other problems") to use low order ('reduced') integration rules, for which wave velocities are most 
correctly given. An alternative which we have used here is simply to employ the identical 
interpolation rule to the non-linear terms F, A, S and G,  i.e. 

F"=CE;N,; A " = C ~ N ~  (26) 
j i 

Sn = C S y N j ;  C" = C c N j  
i i 

Application of the Galerkin method produces the equation system: 

MA@ = P (27) 
where M is the standard (symmetric) mass matrix, A@ = - @ and 0,t are defined by 

€JT = [01,  fr,, o,, , . .] 
Tr = fl&&,... 1 (28) 

T i = A t  I( S- -  ;:) Nidx+- 4"s C ( S- -  :) Nidx+- A:/ A ( S- -  ;:)Ei -dx (29) 

In general, M is a non-diagonal matrix, but for computational expediency it is convenient to use a 
lumped representation M,. Computational results show however that superior results are obtained 
by the use of the full matrix M. A convenient scheme uses an iterative procedure" of the form: 

M,(A@ - A0:- = - MAU:- 1, 1 < r < niter (30) 
where AQ denotes the rth iterate. Unless otherwise stated, all the results presented in this paper 
were obtained for niter = 3 and AOo = 0. 

5.1 Time-step limits 

a standard stability analysis shows that the local Courant number 
If linear elements are employed on a regular mesh, and if furthermore A = const. in equation (2), 

C = AtA/h (31) 
(h = mesh size, At = time-step size) must satisfy the inequalities 

c<1 
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when niter = 1 in equation (30), so that a lumped mass matrix is used, whereas 

C < 1/J3 = 0.5173 

for equation (27) when the complete mass matrix is employed. 
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(33) 

6. NUMERICAL RESULTS IN 1-D 

6.1 Shallow water equations 

The non-linear shallow water equations in 1-D can be written in the form of equation (20) with 

0 ‘1; C-[UdH ‘1 
gdx O g ( H + q ) - u 2  2u (34) 

Here H denotes the depth, q the surface elevation, u the velocity and g the acceleration due to 
gravity. 

(a) Shoaling of a wave. The method of solution was applied to the classical problem of a shoaling 
solitary wave. The variation of the depth is shown in Figure 2(a) and the initial conditions are given 
by : 

U 
u = - (1 + -)q/(crx + q) 2 

1 
and 

u = 0.1, g = 1.0, = 1/30 

This problem has been studied previously by many authors.21722 The results of computations 
employing 40, 80 and 160 equal elements and a time step of At = 0.125 are shown in Figure (2b). 
For 160 elements the total fluid mass was found to increase by only 0.1 per cent between t = 0 
and t = 16 (see Figure 2(b). 

(b) Breaking of darn. As a second example we studied the breaking of a dam. The results obtained 
are shown in Figure 3. The region was covered by 40 equal elements of unit length and initially: 

u = o  
q=1,  OGxG20 
q = O ,  2OGxG40 

The depth H and g are constant and equal to unity. The results were obtained for a time step of 
At = 0.25. 

We note the correct steep front in ‘shallow’ water and the decreasing gradient for the ‘deep’ 
region. 
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L 40 

I 40 elements I 

I I 

80 elements 

Figure 2. Shoaling of a wave: (a) problem statement: (b) solution for 40, 80 and 160 elements 

(c) Outflow of a river. As a third example we studied the propagation of a bore originated by 
tidal motion. The situation is depicted in Figure 4. At t = 0 we assumed a uniform flow and depth- 
field: 

Then the height at the right end of the domain was increased according to the function: 

q = 1 - cos (nt/T,) 

with To = 30. The spatial discretization consisted of 40 elements of unit length. The time step was 
taken as At  = 0.25 and g = 0667. 
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Figure 4. Outflow of a river with bore formation due to tidal motion 
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In Figure 4 the successive solutions are shown at intervals ofAt, = 20At = 5. As the bore steepens, 
the velocity at the right end reaches its correct value of u = - 0.333, thus simulating an infow. 

6.2 Compressible flows 

6.2.1 Zsothermalfow in a nozzle. The equations governing one-dimensional isothermal flow in a 
nozzle with varying cross-section a(x) are of the form of equation (20) with 

2.0 

1.5 

p 1.0 

0.5 

0 

1.0 2.0 3.0 4.0 5.0 0 
(a) X 

2.0 

1.5 

1.0 
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0.5 

0 

0 1.0 2.0 3.0 1.0 5.0 
X (b) 

Figure 5. Isothermal flow in a nozzle: subsonic inflow-subsonic outflow without shock 
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0 
u=[;:~]; F = [  Pau 1: S=[ ,du. 

pc dx. c2pa + p a d  

a dx 
(35) 
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Figure 6. Isothermal flow in a nozzle: subsonic inflow-supersonic outflow without shock 
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state (which was attained after 500 explicit time-steps) are shown in Figures 5-7. In every case 40 
equal elements were used. 

In Figure 5 the results are depicted for the case of subsonic inflow-subsonic outflow with no 
shock, comparing them with the exact solution. The time-step size was At = 007 and niter = 1 (see 
equation (30)). Figure 6 shows the results for the case of subsonic inflow-supersonic outflow with 
no shock, comparing them with the exact solution. The time-step size was At = 0.046 and 
niter= 1 (see equation (30)). No sensible solutions could be obtained for the case of subsonic 
inflow-subsonic outflow with a shock. Here an artificial viscosity term was added to stabilize the 
solution. The form adopted is due to L a p i d ~ s , ' ~  and replaces the quantities resulting from 
equation (27) by smoothed values according to: 

- 

P 

Exact - 
c p 2 . 0  ---- 
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Figure 7. Isothermal flow in a nozzle: Subsonic inflow-subsonic outflow with shock 
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where C ,  is a constant. Notice that the ‘artificial’ diffusion is proportional to the gradient of the 
velocity u. 

The steady-state results obtained for C ,  = 1,2 and a time step At = 0.04 are compared with the 
exact solution in Figure 7. 
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6.2.2. Riernann shock tube problem. The one-dimensional Euler equations for compressible flow 
can be expressed as (20) with: 

1 
4 3  - Y) 

(37) 
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where p is the density, u the velocity, e the specific total energy, y the ratio of specific heats, and the 
pressure p satisfies 

P = (Y - 1 ) P  Ce - u2/21 (38) 

The problem analysed is that of a shock tube in which initially a diaphragm separates fluid in a 
low pressure chamber from fluid in a high pressure chamber. At  t = 0, the diaphragm is removed 
and the resulting flow is characterized by the presence of a shock wave, contact discontinuity and 
rarefaction wave. The particular problem considered is the one due to Sodz5 which has also been 
studied by Bakerz6 in the context of finite elements. The initial configuration is given by 

p =  
u=O0 ~ 4 0 ;  u=0.0 x>50 
p =  1.0 

The problem was solved using 100 equal elements, a time step of Af = 0.205 and a Lapidus constant 
c, = 1.0. Figure 8 shows the profiles for p, u and at time t = 14.35 (70 time steps) for niter = 1 
('Lax-Wendroff ') and niter = 3. The influence of the complete mass is readily seen, giving less 
overshoot across the shock fronts. 

7. EXTENSION T O  HIGHER-DIMENSIONAL PROBLEMS 

In more than one dimension an equation of the form: 

can be solved in a similar fashion. Equation (23) is now replaced by: 

= u" + At( S - * ' $ ) i n  + %[ C( S - A'$) - $[ Ai(S - . ~ j $ ) ] ] l '  (40) 
where 

Specifically, for the problem of advection of a scalar variable u with a solenoidal velocity field 
v = (A' ,  A 2 ,  A3) ,  equation (10) can be written as: 

the analogy with the streamline upwinding4 or balancing dissipation5 being obvious. 
The Galerkin method for spatial discretization has been applied to equation (40) and several 

examples have been studied in 2-D using linear triangular elements. Obviously with equal ease 
other elements could be employed. We have chosen to use the simple triangle for ease of mesh 
generation and refinement and for computational efficiency. As in many problems steep fronts are 
developed, higher order elements are not recommended. 
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8. EXAMPLES IN 2-D 

8.1 Scalar advection 

As a first example we studied the classical problem of the advection of a cone in a rotating fluid. 
The problem has been studied extensively in the past.4.’3’14,15,17,26-28 F or the computation a 
criss-cross mesh was chosen (the alignment of elements plays no crucial role) with C ,  = 0, and a 
complete rotation was accomplished in 200 time steps. The initial configuration is shown in 
Figure 9; Figure 10 shows the solution after 1 rotation for niter = 1 (‘Lax-Wendroff), or lumped 

Figure 9. Advection of a cone in a rotating fluid initial configuration 

Figure 10. Advection of a cone in a rotating fluid: solution after 1 rotation for niter = 1 
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Figure 11. Advection of a cone in a rotating fluid solution after 1 rotation for niter = 3 

mass FEM) and Figure 11 for niter = 3. A very good solution is thus obtained for the case of 
consistent mass, although no big systems of equations have to be solved or stored. The cone height 
was reduced by 2 per cent and the maximum undershoot was 1.5 per cent. This shows that the 
method attains an accuracy comparable or even higher than that achieved by implicit 
 procedure^^^^^^^^ or characteristics-based 

8.2. Non-Linear shallow water equations in 2-0 

The 2-D non-linear shallow water equations can be written in the form of equation (39) with: 

s =  SH,AH+V) [ " I  SH,,(H + r l )  

We considered the problem of a channel with uniform depth H =  1, in which a sudden 
contraction of width occurs. The inflow was prescribed as supercritical, with a Froude number of 
Fr = 2.5. 

The spatial discretization is shown in Figure 12(a). 
The solutionwas obtained after approximately 500 times steps and is depicted in Figures 12(b) 

and 12(c), showing the height distribution and the velocity field. Observe that although the mesh is 
quite coarse the solution depicts correctly the oblique wave originating in front of the contraction. 
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Figure 12. Supercritical flow (Fr  = 2.5) in a narrowing channel: (a) spatial discretization: (b) q (Total depth = 9 + 1.0); 
(c) velocity field 

8.3. Euler equations in 2-0 

The 2-D Euler equations can be written in the form of equation (39) with 

rp i  r PU -I 

We considered the flow around a parabolic arc in a wind-tunnel. The problem statement is described 
in Reference 23. The inflow Mach number was given by M a  = 0.84, producing a local supersonic 
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Fig. ll(a) 
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. , . , . , . . 

Fig. 1 l(c) 

Figure 13. Parabolic arc in a wind-tunnel ( M a  = 0.84): (a) spatial discretization; (b) Mach number contours; (c) pressure 
contours 
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field over the aerofoil. Figure 13(a) shows the spatial discretization, Figure 13(b) the Mach number 
contours and Figure 13(c) the contours of the pressure field. The results were in good agreement 
with those given by Tezduyar and Hughes.23 

9. CONCLUDING REMARKS 

The examples illustrate that the procedures suggested in the present paper lead to an accurate and 
versatile method of dealing with hyperbolic, non-linear systems using f.e.m. procedures. Indeed in 
several of the examples results much superior to those attainable with equivalent finite difference 
methods (currently dominating this field) have been obtained. The method expressed is relatively 
simple to use and in this paper we only treated explicit time-marching methods which are 
economical and can be used on relatively small computers. Obviously it can be adapted to implicit 
forms but in this context (finite velocity of propagation of disturbances) these do not appear 
attractive. Although this paper concentrates on examples which are purely hyperbolic and contain 
no natural dissipation (e.g. diffusion) a direct inclusion of this does not present any difficulty (see 
Appendix I). 

Although the solution presented overcomes many of the difficulties encountered, much yet 
remains to be done. Two directions of improvement are currently being explored. The first deals 
with the inherent problems of discontinuities at shocks. Here it has been frequently suggested that 
local mesh refinement or use of discontinuous shape functions may be effective. 

The second is the question of economy for meshes with rapidly varying element size or for 
systems with order of magnitude different eigenvalues. Here technologies of simultaneous use of 
different time steps may be the best way to follow. 
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APPENDIX I: INTRODUCTION OF DIFFUSION 

If the equation to be solved reads: 

u,t + f , x  = ( V ~ , X ) . X  (43) 
we can follow two lines: 

(a) make a formal Taylor expansion for Au as in the hyperbolic case and neglect higher order 

(b) transform (43) to Lagrangian co-ordinates, move the mesh, and reinterpolate neglecting in 
derivatives (this has been interpreted as an operator splitting”) 

the Taylor series expansion again the derivatives of order k > 2. 
In either case, the algorithm gives for the Euler time-stepping scheme: 

AU = - A t f x  + At (44) 

We note that nothing changes in the ‘hyperbolic part’ of the equation. The inclusion of a source 
term S # S(u) was omitted for the sake of clarity, but can be introduced without problems.16 
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APPENDIX 11: SYSTEMS OF EQUATIONS IN 1-D 

Let us consider the general form: 

u , ~  + AU?, = 0 

Suppose A = const. for simplicity. We can decompose A using 

A = X A X - ~  

(45) 

(46) 
with 

X = matrix of eigenvectors 
A = diagonal matrix of eigenvalues 

Transforming the variables from u to v = X-'u  we obtain: 

v , ~  + Av,, = 0 (47) 

i.e. n decoupled equations of the form 

d i  + A i d x  = 0 

Now we can solve each of these equations as in the case of a single equation (See section 2), and 
obtain: 

or simply 
At2 
2 

AV = - AtAv,,l" + - (A2~,x) ,x ln  

This general result can be transformed back to the original (u) variables, giving: 

At2 
2 

AU = - A~Au,,J" + --(A2~,,),,J" 

i.e. the general form required. If A = A(u, x, t )  the analysis becomes much more cumbersome. 
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